Stage 1 MEMLS MIX{WILD} Cheatsheet

Mixed-effects Multiple Location Scale modeling:

Mixed-effects multiple location scale model (MEMLS) augments the MELS model by including multiple subject-level random location effects in the Mean model (i.e., both random intercept and slope(s)). The model still allows for the WS variance submodel, as well as random scale effect.

* Please see more details in User's Guide Chapter 2.

Website: https://reach-lab.github.io/MixWildGUI/ User Guide: https://reach-lab.github.io/MixWildGUI/MixWild User Guide.pdf

MIX{WILD} Stage 1 MEMLS Stage 1 Cheatsheet

Mixed-effects Multiple Location Scale modeling:

Mixed-effects multiple location scale model (MEMLS) augments the MELS model by including multiple subject-level random location effects in the Mean model (i.e., both random intercept and slope(s)). The model still allows for the WS variance submodel, as well as random scale effect.

MIX{WILD} Stage 1 MEMLS Stage 1 Cheatsheet

Mixed-effects Multiple Location Scale modeling:

Model C

Mixed-effects multiple location scale model (MEMLS) augments the MELS model by including multiple subject-level random location effects in the Mean model (i.e., both random intercept and slope(s)). The model still allows for the WS variance submodel, as well as random scale effect.

[Stage 1 Analysis Results]

Overiew (Example 2 in Users' Guide Chapter 2)

In this analysis, the outcome variable is positive affect (PA), and we examine whether the variable weekend vs weekday (time-varying variable) can influence participants' daily positive affect (time-varying variable) in the Mean and WS Variance submodels, after controlling for age (time-invariant variable).

Mean (Beta) Model

This analysis shows that the time-varying variable weekend has a positive association with PA (*beta=1.398*), which suggests subjects' PA was higher on weekend days compared to weekdays. In addition, a person's PA is significantly related to their baseline age (*beta=-0.166*), with increasing baseline age associated with lower positive mood.

Random Location Effect Variances and Covariances

Subjects differed significantly between each other based on mean levels (random intercept) of PA (*estimate=59.240*) and differed in their association (random slope as indicated by the weekend regressor) between weekend and PA (*estimate=13.707*).

WS (Tau) Model

Within-subject variance in PA varies from day to day within a subject (tau=4.539). The within-subject variance in PA is not associated with the weekend days (weekend effect on the WS variance).

Random Scale Variance and Covariance

While there is no association between WS variance and random intercept or slope, there is considerable scale variability in PA across subjects (Scale int var); a significant random scale estimate suggests that subjects differ from each other in their degree of WS variance (*estimate=0.151*).

onfi	guration	Stage 1 Conf	figuration	Stage 1 Results	View Model	View Data	Help		
Results from stage 1 analysis									
	Log Like Akaike's Schwarz	elihood s Information 's Bayesian C tiplied by -2 elihood	Criterion riterion	= -5837.005 = -5848.005 = -5861.993 = 11674.009 = 11666.009					
	Schwarz Variable	's Bayesian C	riterion Estimate	= 11030.005 = 11723.985 = AsymStdError	z-va.	lue 1	p-value		
	BETA (req intercept WEEKEND Age	gression coef t	ficients) 44.03320 1.39758 -0.16584	0.91409 0.66252 4 0.05203	48.17 2 2.10 3 -3.18	156 (950 (745 (0.00000 0.03490 0.00144		
	Random () intercept Covarian WEEKEND	location) Eff t ce	ect Variand 59.24007 -5.63862 13.70715	es and Covariand 10.29743 5.70737 5.85948 	5.75 -0.98 2.33	287 (795 (931 (0.00000 0.32318 0.01932		
	IAO (WS intercept WEEKEND Random So	t cale Variance	4.53923 0.12493 and Covari	-inear model) 0.06936 0.08122	5 65.44 2 1.53	135 (820 (0.00000 0.12400		=
	Cov inte: Cov WEEKI Scale int	rcept END t var	-0.46224 -0.40872 0.15138	0.48968 0.34581 0.04571	8 -0.94 1 -1.18 1 3.31	396 () 193 () 174 ()	0.34519 0.23723 0.00093		•

* Please see more details in User's Guide Chapter 2 {Example 2}.

Save Results As ...

Website: https://reach-lab.github.io/MixWildGUI/

User Guide: https://reach-lab.github.io/MixWildGUI/MixWild User Guide.pdf